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Abstract
We compute the component field four-dimensional N = 1 supergravity
Lagrangian that is obtained from a superfield Lagrangian in the U(1)K
formalism with a linear dilaton multiplet. All fermionic terms are presented.
In a variety of important ways, our results generalize those that have been
reported previously, and are flexible enough to accommodate many situations of
phenomenological interest in string-inspired effective supergravity, especially
models based on orbifold compactifications of the weakly coupled heterotic
string. We provide for an effective theory of hidden gaugino and matter
condensation. We include supersymmetric Green–Schwarz counterterms
associated with the cancellation of U(1) and modular duality anomalies; the
modular duality counterterm is of a rather general form. Our assumed form
for the dilaton Kähler potential is quite general and can accommodate Kähler
stabilization methods. We note possible applications of our results. We also
discuss the usefulness of the linear dilaton formulation as a complement to the
chiral dilaton approach.

PACS numbers: 11.30.Pb, 11.25.Sq, 11.10.Ef, 04.65.+e

1. Introduction

The topic of four-dimensional N = 1 supergravity coupled to supersymmetric matter and
super-Yang–Mills fields is an old and well-understood part of supersymmetric field theory. A
variety of superspace methods were developed many years ago, all of them designed to write
locally supersymmetric Lagrangians in a compact form while at the same time leading most
easily to component field expressions. Nevertheless, this component expansion can be tedious
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and it proves useful to have the results tabulated; e.g., so that model-building can proceed,
with a minimum of effort, from superfield assumptions to component field consequences.

For the case of chiral multiplets coupled to supergravity and the vector supermultiplets
of a super-Yang–Mills theory, component expansions have been tabulated under a very broad
set of assumptions (originally by Cremmer et al [1]; nicely reviewed by Wess and Bagger
[2]). For less conventional arrangements and assortments of N = 1 multiplets, however, the
coverage is a bit patchy. The example in which we are interested involves a linear multiplet [3].
Although supergravity coupled to a linear multiplet [4] has been studied in a large number of
works (enumerated and discussed below), some details remain to be given. This is particularly
true when very general assumptions for the form of the superfield Lagrangian are envisioned.

In the present work we consider a class of supergravity theories—containing a linear
multiplet—for which only specialized or somewhat incomplete results are available; it is our
intention to generalize previous work and to fill in some details that are missing in the literature.

While completeness is a reasonable motivation for the determination of the full component
Lagrangian, Planck mass suppressed fermion interactions may have phenomenological
applications. For example, processes forbidden in the standard model and globally
supersymmetric extensions might be mediated by gravitationally suppressed interactions.
This is particularly true in the case where large vacuum expectation values (vevs) occur due
to the presence of an anomalous U(1).

Below, we will argue that a theory of supergravity that contains a linear multiplet is
well motivated from the perspective of string-inspired effective supergravity. Our discussion
is a synopsis of opinions offered previously by other authors. Whereas the chiral dilaton
formulation is more common, on the basis of the points raised in our discussion it is our
opinion that the linear dilaton framework should be regarded as a useful complement.

We are interested in generalizations of the effective theory of Binétruy, Gaillard and
Wu (BGW) [5–7], as well as in the computation of those fermionic terms in the Lagrangian
that were neglected by these authors ( justifiably, as the issues in which they were interested
did not require knowledge of these terms). The BGW effective theory is inspired by orbifold
compactifications of the weakly coupled heterotic string1. The low energy limit of the heterotic
string compactified on an orbifold is an effective supergravity theory. The BGW effective
theory is designed to implement dynamical supersymmetry breaking through the strong
dynamics of a super-Yang–Mills theory in a hidden sector. Whereas the perturbative scalar
potential of the effective supergravity has flat directions—corresponding to an infinite vacuum
degeneracy parameterized by massless scalars (moduli)—the effective theory of dynamical
supersymmetry breaking lifts these flat directions and hence gives rise to moduli stabilization.

In section 2 we outline the field content that is present in the theories studied here. We
describe the interpretations that are to be given to these fields in the context of string-inspired
effective supergravity. We briefly review the duality that relates the chiral dilaton and linear
dilaton formulations. We discuss the reasons why one might choose to work in the latter
formulation in addition to the former. We comment on some instances in which the two
formulations have confronted each other and seem to be at odds. A brief summary of previous
works on the subject of supergravity with a linear dilaton is given. We relate these to our
work and describe how our results supplement those that already exist. Finally, we define the
superfield Lagrangian for which we have computed the component expansion.

1 More specifically, BGW were concerned with the E8 × E8 heterotic string. However, their effective supergravity
description would work just as well for spin(32)/Z2 constructions. The only issue there is to hide the hidden sector.
Of course this is already a problem in the E8 ×E8 case due to the presence of twisted sectors, which couple subgroups
of the two E8’s; for example, see the discussion in [8, 9].
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Section 3 discusses some aspects of our results. We emphasize features of the component
Lagrangian that we find interesting. We guide the reader to our main results—lengthy
formulae—which are contained in appendices. Our conclusions are stated in section 4.

In appendix A we summarize our notations, conventions and abbreviations. In appendix
B we outline the method of projection to component fields that is used in the U(1)K superspace
formalism (see below). In appendix C we discuss the geometric identities of U(1)K superspace
that are particularly useful in the computation of the component Lagrangian. In appendices
D–F we present the lengthy formulae that comprise our principle results.

2. The effective theory

In this section, we introduce the reader to the class of theories that we intend to study. We
relate our approach to the more familiar formulation with a chiral dilaton. We also discuss
the motivations for working with a linear dilaton. Indeed, we believe that there exist instances
where one might prefer to use a linear dilaton; these reasons are of a purely practical nature,
as the two formalisms are equivalent provided they are properly related. (Specifically, the
equations of motions should form equivalent systems and constraint equations in one formalism
must find an equivalent expression in the other.)

2.1. Content and framework

Our intent in this subsection is only to present enough of a summary that the reader not
familiar with these topics can understand the motivations and key concepts involved in the
present work. For further details, the reader is invited to refer to the papers that we cite below;
in particular the reviews [10, 11] are valuable for further study of formal issues of linear
multiplets in the U(1)K formalism and papers [12, 13] provide nice reviews of the related
superstring phenomenology.

The theory we consider is a variety of four-dimensional N = 1 supergravity. It contains
the graviton, Yang–Mills gauge fields, matter fields and moduli fields, including a dilaton.
Each of the matter and moduli fields (excepting the dilaton) may or may not be charged with
respect to the Yang–Mills gauge group. All of the fields in the theory are introduced along with
superpartners through N = 1 supermultiplets, by starting with the Kähler U(1) superspace
formalism (denoted by U(1)K ) [14–16]. The U(1)K approach has been reviewed in [11],
hereafter referred to as BGG. The minimal supergravity multiplet

(
em

a, ψm
α, ψ̄mα̇,M,M, ba

)
is introduced through the superdeterminantE of the supervielbeinEM

A and geometric relations
in U(1)K superspace. Gauge multiplets

(
a(a)m, λ(a)α, λ̄

α̇
(a), D(a)

)
are introduced through vector

superfields fixed to Wess–Zumino gauge, where (a) labels a basis of orthogonal generators
of the gauge group. Except in a counterterm associated with an anomalous U(1) factor, only
corresponding chiral field strengths Wα

(a) will appear explicitly in the superfield Lagrangian,
due to the appearance of the Yang–Mills connection in the covariant derivatives of U(1)K
superspace. Matter multiplets and all of the moduli multiplets except the dilaton are introduced
through chiral superfields �k, which have field content

(
φk, χk

α, F k
)
. The dilaton is introduced

through a (modified) linear superfield L; its field content will be discussed below. We account
for the leading effects of a strongly coupled hidden sector with condensing gauge group GC

through static (auxiliary) chiral superfields U(a) and �α . Here, U(a) is in correspondence with
the operator (WW)(a) in the unconfined theory; i.e., its lowest component (the θ = θ̄ = 0
part, denoted by |(0,0))u(a) = U(a)|(0,0) corresponds to the gaugino bilinear operator (λλ)(a)

which acquires a nonvanishing vev (vev), triggering gaugino condensation [18]. The lowest
component of �α corresponds to a scalar operator of hidden sector matter fields which may
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also take a nonvanishing vev and play a role in the effective theory of supersymmetry breaking
through the dynamics of the hidden sector.

2.2. Linear versus chiral dilaton

In the context of string-inspired supergravity, the four-dimensional dilaton is a composite
of ten-dimensional fields dimensionally reduced to an effective four-dimensional theory. In
Witten’s classic reduction [17], one has a real scalar σ , which arises from the ten-dimensional
graviton, the ten-dimensional dilaton φ and a 2-form field strength f̂mnp. The four-dimensional
dilaton is given by

1

g2
s (σ, φ)

= e3σ φ−3/4. (2.1)

It is the vev of this quantity that determines the strength of gauge couplings. The effective
supergravity Lagrangian naturally pairs this four-dimensional dilaton with a pseudoscalar D
that is the universal axion; however, a duality transformation must be made to trade f̂ mnp

for D:

φ−3/2 e6σ f̂ mnp ≡ εmnpq∂
qD. (2.2)

Then the natural pairing is

s = e3σφ−3/4 + 3i
√

2D (2.3)

since for a Kähler potential with leading-order s dependence K � − ln(s + s̄) the standard
chiral supergravity formulation yields the correct terms in the effective Lagrangian. When
we promote s → S, a chiral superfield, we have the chiral dilaton formulation. Due to the
N = 1 supersymmetry, the complex field s has a superpartner which is the dilatino. The chiral
multiplet formulation is used for reasons of familiarity and simplicity.

Instead of making the duality transformation (2.2), we can work with an N = 1 multiplet
that already contains a 2-form field strength—the linear multiplet [3, 4, 19, 20]. Whereas in
the leading-order effective Lagrangian it is straightforward to impose (2.2) and replace f̂ mnp

by D, in a more general setting one finds that the corresponding duality transformations are
difficult to perform explicitly [21–23]. If the beyond-leading-order Lagrangian is obtained
from string theory, so that it already contains the 2-form field strength f̂ mnp, it may be more
practical to work with the linear multiplet and thus avoid intricacies that may be associated
with the duality transformation.

A second issue arises when an effective theory of gaugino condensation is included as a
mechanism for dynamical supersymmetry breaking. The chiral field strength superfields of
the Yang–Mills group satisfy

(D2 − 24R) Tr(WW) − (D 2 − 24R) Tr(WW) = t.d. (2.4)

where ‘t.d.’ stands for a total derivative. To treat the condensate superfield U ∼ Tr(WW) as
an ordinary chiral superfield (of U(1)K weight 2) fails to implement this constraint [24–26].
In the linear dilaton formulation, the chiral field strength emerges from the modified linearity
conditions:

(D 2 − 8R)L = − Tr(WW) (D2 − 8R)L = − Tr(WW). (2.5)

When U = ∑
(a)∈GC

U(a) (where GC is the condensing part of the gauge group) is introduced
in (2.5) through

Tr(WW) → Tr(WW) + U (2.6)
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then (2.4) is automatically satisfied for the U(a) [6]. Although this constraint can be imposed
in the chiral dilaton multiplet formulation, it is more difficult. In this regard the linear multiplet
has a practical advantage.

Of course one may ask (i) what evidence exists that would suggest (2.4) should be satisfied
when Tr(WW) is replaced by the interpolating field U, (ii) whether imposing this constraint
has any important effects on the effective theory of dynamical supersymmetry breaking. These
are certainly fair questions and we know of no clear answer to (i), except that it seems as the
most reasonable assumption. We do have something to say about (ii).

In the present formalism, the condensate superfields U(a) are introduced as static chiral
superfields. Their highest components FU(a)

(defined in (A.5)) thus appear only linearly in the
component Lagrangian. However, a subtlety arises in deriving the corresponding equations of
motion: an important constraint exists on the FU(a)

if we extend (2.4) to the condensates. That
is, suppose we impose

(D2 − 24R)(Tr(WW) + U) − (D 2 − 24R)(Tr(WW) + U) = t.d. (2.7)

Then it was noted in [5] that we have for the highest components FU(a)
the constraints

− 1
4 (D2U(a) − D 2

U(a)) = FU(a)
− F U(a)

= 4i∇mBm
(a) + u(a)M − u(a)M. (2.8)

Here ∇mBm
(a) is identified with the total derivative term in (2.7), while u(a)M − u(a)M arises

from the 24RU − 24RU part. When one varies the action with respect to the auxiliary fields
FU(a)

, it is crucial to respect (2.8) by first rewriting FU(a)
as

FU(a)
= 1

2

(
FU(a)

+ FU(a)

)
+ 2i∇mBm

(a) + 1
2 (u(a)M − u(a)M) (2.9)

and the conjugate of this for FU(a)
. (For example, this has been done in equation (2.21) of

[6].) One then varies with respect to the unconstrained combination FU(a)
+ FU(a)

.
The crucial thing to note is the last term on the right-hand side of (2.9). Generically,

it has a nonvanishing vev when the scalar potential is minimized2. It is a supersymmetry
breaking vev which couples to operators that appear with a coefficient FU(a)

in the Lagrangian.
In particular, it can contribute to soft terms in the low energy effective Lagrangian. Note also
that u(a)M −u(a)M is anti-Hermitian whereas FU(a)

+FU(a)
is Hermitian. Thus these operators

couple to different parts of the operators that are coefficients of FU(a)
in the Lagrangian prior

to the substitution (2.9).
On the other hand, if we had treated U(a) as an ordinary chiral superfield of U(1)K weight

2, we would have

D2U(a) − D 2
U(a) = t.d. (2.10)

and therefore

FU(a)
− FU(a)

= t.d. (2.11)

The supersymmetry breaking vev disappears on the right-hand side in this approach, leading to
a different phenomenology. Incidentally, this also occurs in the approach taken in [22], where
it was assumed that the highest component of the Chern–Simons superfield �(a) (see below)
vanishes. But this is nothing other than FU(a)

, which as we have seen does not have a vanishing
vev in the BGW approach if supersymmetry is broken. In fact, if we look at the perturbative

2 Clearly, the phases of the condensates u(a) and the auxiliary scalar M are intimately involved in whether or not this
term vanishes in the vacuum. Thus a more detailed study of the axionic background is necessary to understand its
relevance. For example, see [6].
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form of �(a) as given in [22], there is no apparent reason why its highest component would
not get a vev, since it is a scalar operator that solely contains strongly interacting fields.

One might think that it would be useful to relate the effective Lagrangian to that of the
chiral dilaton formulation and compare in the global limit where the effective theory is known
[27]. However, the last term on the right-hand side of (2.9) is implicitly suppressed by powers
of 1/mP , the inverse reduced Planck mass, and is obviously a supergravity effect. (After all,
it involves the auxiliary scalar M of supergravity.) Hence it would not appear in the theories
of global supersymmetry. Nevertheless it is important in the present context because the soft
term phenomenology will generally be affected by its presence.

In conventional supergravity coupled to super-Yang–Mills and a chiral dilaton, the chiral
field strength superfields Wα

(a) are introduced through an F-density, which necessitates a
holomorphic metric f(a)(b)(S,�); i.e., one has

LYM =
∫

d4θ
E

8R
f(a)(b)(S,�)(W (a)W (b)) + h.c. (2.12)

However, it is well known that this is not the unique local superfield Lagrangian through
which the Yang–Mills field strength can be introduced; the possibility of a nonholomorphic
metric is allowed if instead we introduce the chiral field strength superfields using a D-
density Lagrangian [1]. Generically, the linear multiplet approach leads to a super-Yang–
Mills Lagrangian that is equivalent to a combination of the holomorphic F-density and
nonholomorphic D-density. On the other hand, it has been shown that the one-loop effective
Lagrangian derived from heterotic orbifold models [28] is such that one can always write the
super-Yang–Mills Lagrangian as a pure F-density [21]. In the linear dilaton formulation
matched to the string theoretic calculations, one of course obtains a super-Yang–Mills
Lagrangian that is just an F-density in the chiral dilaton formulation3. But, it would be
interesting to formulate the corresponding conditions explicitly in the general context. The
component expansion provided here may be of some aid in such an enterprise.

The advantages of the linear multiplet listed above suggest that in detailed model-
building—which intends to go beyond leading order, implement gaugino condensation, and
nonperturbative corrections to the dilaton Kähler potential—the linear dilaton is a practical
tool. At the very least, it is worthwhile to have parallel studies in a different formulation which
is supposed to be equivalent to the chiral dilaton. These are among the reasons for which
BGW chose to work in this setting. It then becomes useful to have component field expansions
that are general enough to handle the cases envisioned in semi-realistic applications. This is
the motivation for the computation reported here.

To properly relate the linear dilaton to the chiral dilaton, the duality transformation
should respect supersymmetry. One approach is to perform the duality transformation at the
superfield level [4]. For global supersymmetry, this duality has been reviewed in section 2 of
[22] and [10]. For the locally supersymmetric (supergravity) case in the U(1)K formalism, a
review of chiral-linear duality has been given (briefly) in BGG section 5.5. The duality in the
superconformal approach has been discussed in [21, 22].

For illustrative purposes, consider the Lagrangian

L =
∫

d4θE

[
−2 + f (L) +

1

3
(L + �)(S + S̄)

]
. (2.13)

Here L is treated as a real superfield which is otherwise unconstrained; that is, L is supposed
to represent a first-order formulation of the target theory. S is a chiral superfield. � is real

3 The component expansions given below are general enough to accommodate either situation; to obtain only an
F-density requires that arbitrary functionals that appear here satisfy certain conditions.
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and is the Chern–Simons superfield [29] (see also [21] or appendix F.3 of BGG). It satisfies
the constraints

(D 2 − 8R)� = Tr(WW) (D2 − 8R)� = Tr(WW). (2.14)

The superfield equations of motion obtained from (2.13) yield the duality

L

1 + f (L)
= 1

S + S̄
(2.15)

together with the modified linearity conditions (2.5). We denote the θ = θ̄ = 0 (lowest)
components as

L|(0,0) =  S|(0,0) = s S̄|(0,0) = s̄. (2.16)

Above we mentioned that in the chiral formulation the string coupling gs is determined by the
real part of s; the duality relation (2.15) gives a corresponding meaning to :

g2
s = 2

s + s̄
= 2

1 + f ()
. (2.17)

Further details on the duality relations—for the case of local supersymmetry in the U(1)K
formalism, including the other component fields—may be found in [15, 20].

A comparison of phenomenological implications of either formulation is given in [6]. In
this work it was found that the Kähler moduli of the underlying theory are not stabilized at
their self-dual points in the chiral dilaton approach, whereas the stabilization does occur at
the self-dual points in the linear dilaton approach. It was argued that the disparate results
originate from an explicit S dependence in the effective superpotential of the chiral dilaton
formulation.

However, if one starts with a linear dilaton and performs a duality transformation
analogous to (2.13), it must be that one obtains a chiral dilaton formulation which is equivalent
on-shell. That is, the first-order formalism ensures that the equations of motion for the
linear dilaton supergravity are equivalent to the equations of motion for the chiral dilaton
supergravity, and that the equivalence is established through the superfield redefinition that is
obtained through the duality transformation—the generalization of (2.15). The stabilization of
moduli is studied through minimization of the scalar potential. But this is nothing but a study
of solutions to the equations of motion in the infrared limit, neglecting all fields with nonzero
spin. Since the equations are equivalent in the two approaches, they must yield equivalent
solutions. Thus it is our opinion that some subtlety must have been overlooked in performing
the duality transformation for the theory studied in [6]. In that case the target theory was more
complicated than the illustrative example (2.13). We intend to return to this issue in a future
publication. A full component Lagrangian may shed some light on this issue, since it allows
us to study the duality transformations at the component field level.

2.3. Antecedants

The effective supergravity discussed here is an extension of the BGW effective theory [5–7],
which does not include an anomalous U(1) factor (hereafter denoted by U(1)X) in the gauge
group. A U(1)X is a generic feature of semi-realistic string constructions; for example, in [9]
it was found that 168 of 175 models had a U(1)X. The associated anomaly is cancelled by a
Green–Schwarz (GS) counterterm [30, 31], as will be discussed below. The linear multiplet
formulation provides an elegant description of the effective supergravity that results, as has
been discussed in [32]. Indeed [32–34] aim to address the modifications to the BGW effective
theory in the presence of an anomalous U(1). However, in none of these references is the full



3918 J Giedt

fermionic Lagrangian presented; only the gravitino and gaugino effective masses have been
computed [6, 7]. Moreover, we allow for unconfined matter to couple to the (auxiliary) hidden
matter condensate superfields �α . This is important for the stabilization of flat directions in
the presence of an anomalous U(1) factor, so-called D-moduli [35].

Fermion terms of component Lagrangians in the linear dilaton formulation have previously
been computed by authors other than BGW to varying degrees.

In [16], Adamietz et al obtained all the fermionic terms. However, no superpotential
was included in the Lagrangian, a GS counterterm for a U(1)X was not included, and an
effective theory of gaugino condensation was not explicitly added. Adamietz et al also made
the simplifying assumption that the Kähler potential for the linear multiplet is k(L) = α ln L,
which is equivalent to the assumption K(S, S) ∝ − ln(S + S) in the chiral dilaton approach.
Stabilization of the dilaton sometimes requires a more general function, such as will be studied
here.

In [22], Derendinger et al only gave some of the fermion terms; in particular gaugino
bilinears. Their treatment of gaugino condensation differs from that of BGW in some important
ways, as will be discussed below; these differences affect predictions for soft supersymmetry
breaking operators in the low energy effective theory. Also, a GS counterterm for a U(1)X was
not included in the effective theory. Derendinger et al use the superconformal tensor calculus
[36] to obtain the component Lagrangian, whereas we use U(1)K superspace. We believe that
it is useful to have results in both formalisms.

Various other limiting assumptions were made in these previous works which have not
been made here. Thus our calculation can accommodate a more general set of circumstances
and exhibits possible couplings that were not accounted for in previous works.

2.4. The Lagrangian

In this paper a very general Kähler potential is assumed; it is the same as for BGW [5–7]:

K = k(L) + G(�,�) k(L) = ln L + g(L). (2.18)

Here g(L) is left arbitrary in our calculations, though we have in mind the sort of
nonperturbative corrections that are expected based on general arguments [37] and string
duality [38]. Indeed these sorts of corrections have been used by BGW and others to stabilize
the dilaton at weak coupling (i.e., g2

s
<∼ 1 in (2.17) in a scheme that has come to be known as

Kähler stabilization [5–7, 39–42].
The Lagrangian consists of several pieces4:

L = Lkin + Lpot + LVY + Lthr + L0
GS + LX

GS. (2.19)

The first piece contains the usual kinetic terms for all the fields, and is written in the U(1)K
superspace formalism as follows:

Lkin =
∫

d4θE[−2 + f (L)]. (2.20)

The function f (L) is chosen such that a canonical Einstein term − 1
2R (where R is the Ricci

scalar) is obtained in the component expansion. With reference to the Kähler potential (2.18),
the condition for this to be true is that

Lg′(L) = f (L) − Lf ′(L) (2.21)

where g′(L) = dg(L)/dL, etc. An elementary discussion of how this condition occurs can be
found in section 5.4 of BGG, where their function F is related to the f used here according to
F = (2 − f )/3.
4 See [6] for further discussion on the significance of each term.



Full component Lagrangian in the linear multiplet formulation of string-inspired effective supergravity 3919

The usual superpotential term is included:

Lpot =
∫

d4θ
E

2R
eK/2W(�,�) + h.c. (2.22)

We remind the reader that the chiral superfields �α are static fields corresponding to matter
condensates of the hidden sector. Thus they do not appear in (2.18), but it is important to
include them in (2.22).

In addition to this bare superpotential, we have the Veneziano–Yankielowicz effective
superpotential [43], with suitable modifications suggested by Taylor [44]:

LVY =
∫

d4θ
E

8R

∑
(a)∈GC

U(a)

[
b′

(a) ln(e−K/2U(a)/µ
3) +

∑
α

bα
(a) ln

(
Aα

(a)(�)�α
)]

+ h.c.

(2.23)

The gaugino condensate superfields U(a) appear explicitly here. When they are integrated
we obtain the usual nonperturbative superpotential [27] induced by instanton effects5, only
coupled to supergravity in the present context; to match to the globally supersymmetric results
one should take the decoupling limit mP → ∞. The coefficients b′

(a) and bα
(a) are constrained

by a matching to the weak coupling quantum anomalies. A further discussion can be found,
for example, in [6].

Massive string states can yield threshold corrections to the effective theory below the string
scale. The well-known corrections associated with N = 2 sectors in orbifold compactifications
of the heterotic string are given by [28, 45]

Lthr =
∑

I

∫
d4θ

E

8R


 ∑

(a)�∈GC

bI
(a)(WW)(a) +

∑
(a)∈GC

bI
(a)U(a)


 ln η−2(T I ) + h.c. (2.24)

where the coefficients bI
(a) are determined by explicit string calculations.

Quantum anomalies that arise from the terms so far described are cancelled by Green–
Schwarz (GS) counterterms. The first involves a real function S—not to be confused with the
chiral dilaton of the discussion above—which we will refer to as the GS potential. We restrict
S to be a function of chiral superfields: S = S(�,�). Its purpose is to cancel target-space
duality anomalies. Its superfield expression is

L0
GS =

∫
d4θELS. (2.25)

The precise form of S can only be obtained from a detailed understanding of the full anomaly
structure of the effective supergravity and how it is cancelled in the underlying string theory.
The modular anomaly associated with SL(2, Z)3 transformations on Kähler moduli associated
with the complex planes in orbifold compactifications of the heterotic string is well known.
It is partially cancelled by, for example, a choice of S ∝ G, where G is identified in (2.18).
However, a richer anomaly structure is anticipated on the basis of one-loop supergravity
calculations [46, 47], and so we leave S arbitrary in our component expansion. We note
that since the GS counterterm potential S is left in a rather general form, our component
field expansions do not assume modular invariance; that is, we can accommodate models
where violations of modular invariance are envisioned, due to nonperturbative effects in the
underlying string theory. On the other hand, exact modular invariance can also be imposed
with an appropriate choice for S.
5 Indeed, one can argue that U(a) have masses of order the condensation scale and should be integrated to obtain the
effective theory below that scale. We thank Erich Poppitz for a remark in this regard.
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The second GS counterterm is associated with the anomalous U(1)X, with a corresponding
vector superfield VX. It is given by

LX
GS =

∫
d4θELδXVX. (2.26)

This addition to the BGW effective theory has been the subject of recent work [32–34]. There
it was shown how to fix to unitary gauge and integrate the modes that acquire large masses
when the Fayet–Iliopoulos (FI) term that arises from (2.26) spontaneously breaks U(1)X at a
high scale.

We have omitted the perturbative one-loop effective quantum correction to the Lagrangian.
Related expressions have been studied by various groups: by Derendinger et al using
superconformal methods [21], by Bagger et al using a component field approach [48], by
Gaillard et al in U(1)K superspace [49]. However, all of these calculations involve various
simplifying assumptions on the form of the bare Lagrangian compared to what is given here.
Furthermore, in the calculation of [49] there exist some uncertainties in the precise form of
the chiral projection operator Pχ employed there. In principle, the one-loop effective quantum
correction to the Lagrangian can be derived from Lkin +Lpot by a one-loop computation using,
say, Pauli–Villars regularization [46]. In fact, much of this calculation has been performed in
[46] for the class of Lagrangians studied here. One possible motivation for the present work is
to fill in the fermionic details of the component Lagrangian needed to complete the one-loop
computation.

3. Aspects of the component Lagrangian

Our results for Lpot +LVY +Lthr +LX
GS are given in appendix D. For this part of L the component

field expansion is straightforward, except for a certain subtlety that arises in LX
GS. This has to

do with the evaluation of spinorial derivatives acting on the U(1)X vector superfield VX. Here
it is important to properly account for the conventions of BGG for the solution of superspace
Bianchi identities; details are given in appendix A.

The superpotential Lagrangian (D.1) contains the usual terms that are present in chiral
supergravity; of course a mixing with the dilaton occurs due to the  dependence in the eK/2

pre-factor for these terms6. In addition we have pieces explicitly associated with the linear
supermultiplet:

1

e
LL

pot = eK/2

{
−1

4
W(k′′ + k′2)(ϕϕ) − 1√

2
(Wk + WGk) k′(ϕχk)

+ Wk′
[

1

4
ū − 1

4
Tr(λ̄λ̄) +

1

3
M +

i

2
(ψ̄

m
σ̄mϕ)

]}
+ h.c. (3.1)

The bosonic terms were previously studied in the works of BGW. Note that the (effective)
dilatino and gaugino masses receive contributions from the bilinears ϕϕ and λ̄λ̄ that appear in
(3.1). The bilinear ϕχk which mixes the dilatino ϕ with matter fermions χk is a feature that
deserves further study7. In particular, the presence of large vevs generally leads to important
effects that would arise from the ϕχk bilinear. For example, it is common in semi-realistic
string models for exotic states to be removed at a high scale through large effective masses
generated by FI-induced vevs,

mij ∼ 1
2 〈eK/2Wij 〉 <∼ O(0.1)mP (3.2)

6 We remind the reader of the dilaton () dependent contribution k() to the Kähler potential (2.18); also note that
k′ = ∂k/∂, etc below.
7 The coupling of the dilatino to the gravitino can be eliminated with the ‘gauge’ choice (ψ̄

m
σ̄m)α = 0.
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where mP is the reduced Planck mass. This implies effective couplings in (3.1) of the form

−
√

2
mij

mP

k′()φi(ϕχj ). (3.3)

The implications of such couplings for the cosmology associated with the dilaton, dilatino and
heavy matter states present an interesting topic for further study.

A feature that is special to the fermionic terms appears from the effective theory of
gaugino condensation. This is related to the auxiliary fermions �α

(a) contained in the gaugino
condensate superfields U(a); see (A.5). When these fields are eliminated by their equations of
motion, we obtain their contribution to the Lagrangian:

1

e
L(�) =

∑
(a)∈GC

b′
(a)

8u(a)

(��)(a) + h.c.

=
∑

(a)∈GC

2u(a)

b′
(a)

{
(f (a))2(ϕϕ) + f̂

(a)

k f̂
(a)

 (χkχ)

+ (f̃ (a))2(ψ̄mσ̄mσnψ̄n) + 2f (a)f̂
(a)

k (ϕχk)

+ 2if̃ (a)
[
f (a)(ψ̄mσ̄mϕ) + f̂

(a)
k (ψ̄mσ̄mχk)

]}
+ h.c. (3.4)

f (a) = 1

4
√

2

[
b′

(a)k
′ − f ′′ −

(
k′ + k′′

1 − 1
3k′

)
k′ − 2k′′ −

(
k′ + 3k′′
k′ − 3

)
k′

]
(3.5)

f̂
(a)
k = 1

4

(
b′

(a)Gk − h
(a)
k − Sk

)
(3.6)

f̃ (a) = 1

8
√

2

[
2b′

(a) ln
(
e1− K

2 u(a)

/
µ3) + 2h(a) + f ′ + k′ + S

]
. (3.7)

The (holomorphic) function h(a)(φ, π) is defined in (B.6), and

h
(a)
k χk = ∂h(a)

∂φk
χk +

∂h(a)

∂πα
χα. (3.8)

Here
√

2χαβ = Dβ�α|(0,0) is a further auxiliary spinor, contained in the matter condensate
superfield, which can likewise be eliminated using its equations of motion.

As can be seen from (3.4), we obtain a soft mass for the dilatino; it is roughly the order
of the supersymmetry breaking scale u(a)

/
m2

P ∼ 1 TeV. Furthermore, matter fermions get

a soft mass contribution, which includes mixing with the dilatino, suppressed by
〈
f̂

(a)
k

〉/
mP .

These must be singlets under the standard model gauge group SU(3)C × SU(2)L × U(1)Y
in order for this effect to matter. To see this note that f̂

(a)

k transforms as the conjugate of
χk. This implies that

〈
f̂

(a)
k

〉/
mP

<∼ 10−15 if χk is charged under the standard model. Thus
these terms are relevant only in extended models, such as the non-minimal supersymmetric
standard model (NMSSM), or models with an inflatino, etc. Going to the gauge ψ̄mσ̄m ≡ 0
demonstrates that the above terms do not contribute to the gravitino mass.

In the language of [22], the auxiliary spinors �(a) and �(a) correspond to the next-to-
highest components of the Chern–Simons superfield �(a). However, the authors of [22] set
these components identically to zero (cf their equation (3.29)); hence, the above contributions
to soft fermion masses do not appear in their results. This is one of the ways in which our
results generalize previous work.
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4. Conclusions

In this paper, we have carried out the calculation of the component Lagrangian for supergravity
coupled to gauged matter and a linear dilaton multiplet. We have reviewed the reasons why
this alternative to the chiral dilaton formulation might be useful. We have commented on
previous work that exists in the literature and have explained the ways in which the results
presented here generalize those that have appeared before. We have offered ways in which
these results might be put to use.

In particular, we believe that further details of the duality between the linear dilaton
and the chiral dilaton should be explored. Since some results in the literature are at odds
it would appear that a more careful comparison at the component field level may uncover
the errors which we suppose have led to these discrepancies. At the same time, holomorphy
prevents corrections to the superpotential that involve the linear multiplet and these must arise
as exact symmetries in the chiral formulation. It would be interesting to make the connection
more precise. The component expansion provided here makes that possible since the duality
transformations can be checked at the component field level.

Kähler stabilization involves deviations of the dilaton Kähler potential from the leading-
order form. Such corrections are easily encoded with the modular invariant L, whereas they
require the modified dilaton multiplet S′ which mixes S and T I in the chiral formulation8. This
is no real impediment, but it does make the two frameworks difficult to relate; we can imagine
that each naturally probes some different regions of parameter space for these nonperturbative
corrections. A further study of the duality transformations is required to determine the extent
to which a representative coverage is achieved in either scheme.

We have also pointed out some of the peculiarities of the component Lagrangian. The
fact that L cannot appear in the superpotential leads to special constraints that yield a more
restrictive phenomenology if they are respected. Whereas they can be imposed in the chiral
dilaton formulation, they ‘fall out’ in the present work. This is a nice feature because in a
certain sense it automates model-building. We have also pointed out how the effective theory
of dynamical supersymmetry breaking is impacted by the fact that the gaugino condensate
superfield is obtained from L through Bianchi identities; in particular, we showed how this
can impact the soft term phenomenology of the low energy theory.

As can be seen, several details of the effective theory, and its relation to other formulations,
remain to be explicitly sorted out. We do not expect any remarkable things to be found through
further exploration of this duality, but we anticipate that complete agreement between the
formulations will emerge. As this goal is achieved, the related phenomenological studies will
become increasingly reliable and accurate. Furthermore, the situations that can be studied
easily will be enlarged by the availability of component Lagrangians that are more general
and can thus accommodate a greater variety of assumptions at the superfield level.
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Appendix A. Notation and conventions

The linear superfield L is defined to satisfy modified linearity conditions such that

(D 2 − 8R)L = −U − Tr(WW) (D2 − 8R)L = −U − Tr(WW) (A.1)

[Dα,Dα̇]L = 4LGαα̇ + 2Bαα̇ + 2 Tr(WαW α̇) (A.2)

where we abbreviate sums over GC (condensing parts of the gauge group) and non-GC parts
of the gauge group by

Tr(WW) ≡
∑

(a)�∈GC

(WW)(a) U ≡
∑

(a)∈GC

U(a) etc. (A.3)

In what follows, we adopt the conventions and notation of BGG for the definitions of
component fields in terms of θ = θ̄ = 0 parts (denoted by |(0,0)) of spinorial derivatives

(Dα,D α̇
, etc) of superfields, with the exception that we denote the dilatino according to

ϕα ≡ DαL|(0,0) ϕ̄α̇ ≡ D α̇
L|(0,0). (A.4)

In addition, we define the component fields

u(a) = U(a)|(0,0) �(a)α = 1√
2
DαU(a)|(0,0) FU(a)

= −1

4
D2U(a)|(0,0) (A.5)

and corresponding conjugates. We also have in the notation of (A.3)

u =
∑

(a)∈GC

u(a) �α =
∑

(a)∈GC

�(a)α FU =
∑

(a)∈GC

FU(a)
. (A.6)

For the (auxiliary) matter condensate superfields �α we have component fields

πα = �α|(0,0) χα
β = 1√

2
Dβ�α|(0,0) F β = −1

4
D2�α|(0,0) (A.7)

where α should not be confused with a spinor index.
A semicolon denotes the usual Kähler covariant differentiation on the complex scalar

manifold; e.g.,

Wk; = Wk − �m
kWm �m

k = Gmm̄Gkm̄. (A.8)

In addition to the usual gauge and spacetime reparameterization covariance, Kähler covariance
and U(1)K covariance are included in the covariant derivatives that appear in the component
expansions; e.g., for the fermionic components of chiral superfields we have

Dmχk
α = ∂mχk

α − ω β
mα χk

β − Amχk
α − ia(a)

m (T(a)χα)
k + χi�k

ijDmφj (A.9)

and for the dilatino we have

Dmϕα = ∂mϕα + ϕβω α
mβ − ϕαAm. (A.10)

Here, ω
β

mα is the usual spin connection, a(a)
m is the Yang–Mills connection, Am is the U(1)K

connection, and the Kähler connection �k
ij is defined in (A.8). The coefficient of the Am

term in Dm depends on the U(1)K weight of the field on which it acts9. The component field
expansion for Am ≡ Am|(0,0) is given by

Am|(0,0) = − i

2
bm +

1

4
GkDmφk − 1

4
Gk̄Dmφ̄

k̄ +
i

4
Gkk̄(χ

kσmχ̄ k̄) − i

8
k′′(ϕ̄σ̄mϕ) +

i

6
k′bm

− i

4
k′Bm − i

8
k′ Tr(λ̄σ̄mλ) +

1

8
k′(ψmϕ) − 1

8
k′(ψ̄mϕ̄). (A.11)

9 See section 4 of BGG for a fuller specification and explanation of covariant derivatives in the present formalism.
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We have checked that our expression for Am|(0,0) is equivalent to (BGG-E.3.4) in the special
case of k(L) = α ln L; in this calculation (BGG-5.2.20) and (BGG-5.3.7) are especially
useful; furthermore, a typo in (BGG-E.3.4) must be corrected—the ‘level’ factor of k (not
to be confused with the functional k(L)) should be absent on the ∗hm term that appears in
(BGG-E.3.4).

We evaluate the terms of LX
GS and its spinorial derivatives in Wess–Zumino (WZ)

gauge:

VX|(0,0) =
WZ

DαVX|(0,0) =
WZ

Dα̇VX|(0,0) =
WZ

DαDβVX|(0,0) =
WZ

Dα̇Dβ̇VX|(0,0) =
WZ

0. (A.12)

To evaluate the component field expansions of the spinorial derivatives of VX, we must be
careful to use the conventions of BGG for the solution to the superspace Bianchi identities,
and not those of, for example, Wess and Bagger [2]. Taking this into account, we find
that

DαDα̇VX|(0,0) =
WZ

−aXαα̇

DαD
2
VX|(0,0) =

WZ
4iλXα + 2iaXm(σnσ̄mψn)α

(A.13)
D2D 2

VX|(0,0) =
WZ

8DX + 16
3 bmaXm − 4aXn(ψ

mσnψ̄m) − 8iDmaXm

+ 4(λ̄Xσ̄mψm) − 4(ψ̄
m
σ̄mλX).

These expressions are sufficient to compute LX
GS, when combined with other identities given

here and in BGG.
It proves convenient to introduce the following abbreviations:

�mφk = e a
m Da�

k|(0,0) = Dmφk − 1√
2
(ψmχk) (A.14)

�mφ̄
k̄ = e a

m Da�
k̄|(0,0) = Dmφ̄

k̄ − 1√
2
(ψ̄mχ̄ k̄) (A.15)

�m = e a
m DaL|(0,0) = ∂m − 1

2 (ψmϕ) − 1
2 (ψ̄mϕ̄) (A.16)

if̂ (a)nm = if(a)nm + (ψnσmλ̄(a)) + (ψ̄nσ̄mλ(a)). (A.17)

Because of its length, we find it convenient to abbreviate D2(WW)(a)|(0,0) below. It is
straightforward to obtain D2(WW)(a)|(0,0) from (BGG-4.5.25) if one makes the identification
f(r)(s) ≡ −16 for the functional f(r)(s) that appears there:

D2(WW)(a)|(0,0) = 2f mn
(a) f(a)mn + iεmnpqf(a)mnf(a)pq + 8i(λσmDmλ̄)(a)

− 4D2
(a) + 4M(λλ)(a) − 4(λ(a)σ

mψ̄m)D(a)

− 4i[(ψmσpqσmλ̄(a)) + (ψ̄mσ̄ pqσ̄mλ(a)) − (ψ̄mσ̄mσpqλ(a))]f(a)pq

− 2[(ψmσpqσmλ̄(a)) + 2(ψ̄mσ̄ pqσ̄mλ(a)) − (ψ̄mσ̄mσpqλ(a))]

× [(ψpσq λ̄(a)) + (ψ̄pσ̄qλ(a))]. (A.18)

It is also useful to abbreviate the following components of the superspace torsion,

T α
cb |(0,0) = 1

2
e m
b e n

c

(
Dnψ

α
m − Dmψα

n

)
+

i

12

[
e m
c (ψmσnσ̄b)

α − e m
b (ψmσnσ̄c)

α
]
bn

− i

12

[
e m
c (ψ̄mσ̄b)

α − e m
b (ψ̄mσ̄c)

α
]
M (A.19)
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Tcbα̇|(0,0) = 1

2
e m
b e n

c (Dnψ̄mα̇ − Dmψ̄nα̇) − i

12

[
e m
c (ψ̄mσ̄nσb)α̇ − e m

b (ψ̄mσ̄nσc)α̇
]
bn

− i

12

[
e m
c (ψmσb)α̇ − e m

b (ψmσc)α̇
]
M (A.20)

as can be found in (BGG-4.1.31) and (BGG-4.1.32).

Appendix B. Projection to component fields

If � is a real superfield of U(1)K weight zero, then we may use (BGG-D.1.10) to integrate by
parts in superspace and obtain

L� ≡
∫

d4θE� =
∫

d4θ
E

2R
r̂� + h.c. where r̂� ≡ −1

8
(D2 − 8R)�. (B.1)

Note that r̂� is the chiral projection of �. We use this technique to convert the integrals of
(2.24) to the form (B.1). Doing so we have

r̂GS = r̂0
GS + r̂X

GS r̂ thr = r̂P
thr + r̂NP

thr r̂VY = r̂U
VY + r̂�

VY (B.2)

r̂pot = eK/2W r̂X
GS = −δX

8
(D2 − 8R)(LVX)

r̂P
thr = 1

4

∑
I

∑
(a)�∈GC

(WW)(a)b
I
(a) ln η−2(T I )

r̂NP
thr = 1

4

∑
I

∑
(a)∈GC

U(a)b
I
(a) ln η−2(T I ) (B.3)

r̂U
VY = 1

4

∑
(a)∈GC

b′
(a)U(a) ln(e−K/2U(a)/µ

3)

r̂�
VY = 1

4

∑
(a)∈GC

∑
α

bα
(a)U(a) ln

(
Aα

(a)(�)�α
)

r̂kin = − 1
8 (D2 − 8R)[−2 + f (L)]

(B.4)
r̂0

GS = − 1
8 (D2 − 8R)[LS(�,�)].

It is convenient to introduce two holomorphic functionals h(a)(�,�) and ĥ
(a)

(�) by the
identifications

r̂�
VY + r̂NP

thr ≡ 1

4

∑
(a)∈GC

U(a)h
(a)(�,�) r̂P

thr ≡ 1

4

∑
(a)�∈GC

(WW)(a)ĥ
(a)

(�,�). (B.5)

From expressions (B.3) we see that

h(a) =
∑

α

bα
(a) ln

(
Aα

(a)(�)�α
)

+ ĥ
(a)

ĥ
(a) =

∑
I

bI
(a) ln η−2(T I ). (B.6)

It is worth noting that since our component expansions are written in terms of h(a), ĥ
(a)

, our
results are more general than (B.6), and accommodate any assumptions of the form (B.5).

For any of the r̂i defined above, we have from (BGG-4.4.22) that the corresponding
component Lagrangian is given in terms of the θ = θ̄ = 0 limit of spinorial derivatives:

Li = e

[
−1

4
D2 r̂i|(0,0) +

i

2
(ψ̄mσ̄m)αDαr̂i |(0,0) − (M + ψ̄mσ̄mnψ̄n)r̂i |(0,0)

]
+ h.c. (B.7)
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Here, e is the determinant of the ordinary vierbein; i.e., the usual
√−det g factor. In each case

r̂i has U(1)K weight 2. Let the symbol D denote covariant differentiation including U(1)K
and D covariant differentiation not including U(1)K . Then

Dαr̂i = (Dα + 2Aα)r̂i D2 r̂i = (Dα + Aα)Dαr̂i (B.8)

where the superform A is the U(1)K connection10.

Appendix C. Geometric relations

Here we briefly discuss methods based on the U(1)K superspace geometry that are used in
the more difficult expansions. The first set arises in the kinetic part of the Lagrangian Lkin,
defined in (2.20). The second set occurs in the Green–Schwarz (GS) counterterm Lagrangian
L0

GS, associated with duality group invariance, defined in (2.25).
The difficulty that is encountered in evaluating Lkin is the computation of the component

field expansion of

DαR|(0,0) D α̇
R̄|(0,0) D2R|(0,0) + h.c. (C.1)

Techniques for the evaluation of these in the presence of a linear multiplet were developed
in [16]. However in that case the L-dependent Kähler potential is k(L) = α ln L and some
simplifications occur; furthermore, our conventions for the component field definitions differ
slightly; thus in the present context we must recalculate these expansions. We now detail the
techniques and arrange the expressions that are evaluated in appendices E and F.

For the evaluation of DαR|(0,0), we appeal to the identity (BGG-3.4.42),

DαR = − 1
3Xα − 2

3 (σ cbε)αγ T
γ

cb (C.2)

where Xα is the chiral field strength associated with the Kähler potential:

Xα ≡ − 1
8 (D 2 − 8R)DαK. (C.3)

As originally described in [16], the field strength Xα contains DαR because of the L-
dependence in K (cf equation (2.18) and the modified linearity conditions (A.1). Thus we
extract the DαR contained in Xα so that we can solve for it explicitly, following the methods
of [16]—reviewed in BGG section 5.4. This involves the definitions11.

Xα = X0α + Zα − Lk′(L)DαR

X0α ≡ − 1
8 (D 2 − 8R)DαG(�,�) (C.4)

Zα ≡ Lk′(L)DαR − 1
8 (D 2 − 8R)Dαk(L).

Using (C.4) we rewrite (C.2) as

(k′L − 3)DαR = X0α + Zα + 2(σ cbε)αγ T
γ

cb (C.5)

where now, as it turns out, DαR will not appear on the right-hand side when we work out the
component expansion. Equation (C.5) is in agreement with (BGG-5.4.6). After considerable
manipulation we find for DαR|(0,0) the expansion given in (E.3) and (E.4). One obtains

D α̇
R|(0,0) by Hermitian conjugation.
For the evaluation of (D2R + h.c.)|(0,0) we appeal to (BGG-3.4.44):

D2R + h.c. = − 2
3R ba

ba − 1
3 (DαXα + h.c.) + 4GaGa + 32RR. (C.6)

Similar to the situation described in the previous paragraph, we need to extract (D2R + h.c.)
10 The quantity Am used above is related via Am = (E B

m AB)|(0,0), where B runs over b, β, β̇.
11 Note that the quantity Yα appearing in (BGG-5.4.5) is related to the present notation by Yα ≡ X0α + Zα .
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from (DαXα + h.c.) due to the L-dependence in K. With definition (C.4) it is not hard to show
that

(k′L − 3)(D2R + h.c.) = 2R ba
ba − 12GaGa − 96RR + (DαX0α + DαZα + h.c.)

− (k′ + k′′L)(DαLDαR + h.c.) (C.7)

in agreement with (BGG-5.4.8). Taking the θ = θ̄ = 0 part of this expression yields

(k′ − 3)(D2R + h.c.)|(0,0) = 2R − 4
3bmbm − 8

3MM + (DαX0α|(0,0) + DαZα|(0,0) + h.c.)

− (k′ + k′′)(ϕαDαR|(0,0) + h.c.) (C.8)

where R is the spacetime Ricci scalar. Note that in the special case k() = α ln  considered in
[16] we have k′ +k′′ = 0. This eliminates the last term and simplifies many of the expressions
given below.

The component field expansion of (DαX0α|(0,0) + h.c.) is obtained from (BGG-4.2.13)
provided we take K(�,�) → G(�,�) in their expressions for derivatives of the Kähler
potential. This leaves only (DαZα|(0,0) + h.c.) to be determined; we have evaluated this
in (E.7).

For the evaluation of L0
GS it was shown in [16] how to proceed through the chiral field

strength for the GS counterterm potential S(�,�):

XSα = − 1
8 (D 2 − 8R)DαS. (C.9)

The evaluation of XSα is more complicated than that of X0α ≡ − 1
8 (D 2 − 8R)DαG: whereas

Gkk̄; ≡ 0, the corresponding quantity Skk̄; does not necessarily vanish. However, the
organization of the calculation around this field strength proves productive and leads directly
to the results of appendix F.

Appendix D. Expansion of Lpot + LVY + Lthr + LX
GS

Here the expansions are straightforward. See appendix B for superfield definitions of various
parts of the Lagrangian given here:

1

e
Lpot = eK/2

{
−1

2
(Wk; + WGk; + WGk + WkG + WGkG)(χ

kχ)

− 1

4
W(k′′ + k′2)(ϕϕ) − [M + (ψ̄mσ̄mnψ̄n)]W

+ (Wk + WGk)

[
Fk − 1√

2
k′(ϕχk) +

i√
2
(ψ̄

m
σ̄mχk)

]

+ Wk′
[

1

4
ū − 1

4
Tr(λ̄λ̄) +

1

3
M +

i

2
(ψ̄

m
σ̄mϕ)

]}
+ h.c. (D.1)

1

e
LU

VY =
∑

(a)∈GC

b′
(a)

4

{
− 1

2u(a)

(��)(a) +
1

4
k′′(ϕϕ) +

1

2
Gk;(χkχ) +

1√
2
k′(�(a)ϕ)

− [M + (ψ̄mσ̄mnψ̄n)]u(a) ln(e−K/2u(a)/µ
3)

− k′u(a)

[
1

4
ū − 1

4
Tr(λ̄λ̄) +

1

3
M +

i

2
(ψ̄

m
σ̄mϕ)

]

− Gk

[
u(a)F

k +
i√
2
u(a)(ψ̄

m
σ̄mχk) − (�(a)χ

k)

]

+ ln
(
e1− K

2 u(a)

/
µ3) [

FU(a)
+

i√
2
(ψ̄

m
σ̄m�(a))

]}
+ h.c. (D.2)
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1

e
L�

VY +
1

e
LNP

thr =
∑

(a)∈GC

1

4

{
h(a)

[
FU(a)

+
i√
2
(ψ̄

m
σ̄m�(a)) − u(a)(M + (ψ̄mσ̄mnψ̄n))

]

+ h
(a)

k

[
u(a)F

k +
i√
2
u(a)(ψ̄

m
σ̄mχk) − (�(a)χ

k)

]
− 1

2
h

(a)

k;u(a)(χ
kχ)

}
+ h.c.

(D.3)

1

e
LP

thr =
∑

(a)�∈GC

1

4

{
ĥ

(a)

[
(λλ)(a)(M + (ψ̄mσ̄mnψ̄n)) − 1

2
f mn

(a) f(a)mn

− i

4
εmnpqf(a)mnf(a)pq − 2i(λσmDmλ̄)(a) + D2

(a) − M(λλ)(a)

+ ((ψmσpqσmλ̄(a)) + (ψ̄mσ̄ pqσ̄mλ(a)))

×
(

if(a)pq +
1

2
(ψpσq λ̄(a)) +

1

2
(ψ̄pσ̄qλ(a))

)

− i

2
εmnpq(ψ̄mσ̄nλ(a))((ψpσq λ̄(a)) + (ψ̄pσ̄qλ(a)))

]

− ĥ
(a)

k

[
(λλ)(a)

(
Fk +

i√
2
(ψ̄

m
σ̄mχk)

)
− i

√
2(χkλ(a))D(a)

+
√

2(χkσmnλ(a))f̂ (a)mn

]
−1

2
ĥ

(a)

k;u(a)(χ
kχ)

}
+ h.c. (D.4)

1

e
LX

GS = δX

4
aXm{2Bm + Tr(λ̄σ̄ mλ) + 2i[(ϕσnmψn) + (ψ̄nσ̄

nmϕ̄)]

− 2(ψ̄
n
σ̄mψ̄n) + iεmnpq(ψ̄nσ̄pψq)} +

δX

4
{i[(ϕλX) − (ϕ̄λ̄X)]

+ [(ψ̄m
σ̄mλX) + (λ̄Xσ̄mψm)] + 2DX}. (D.5)

Here we have evaluated LX
GS in Wess–Zumino (WZ) gauge (see equation (A.12)).

Appendix E. Expansion of Lkin

The kinetic Lagrangian Lkin, defined in (2.20), is obtained from the component expansion of
r̂kin, defined in (B.4). With some effort the following expressions are obtained:

r̂kin|(0,0) = − 1
8f ′′(ϕ̄ϕ̄) + 1

8f ′(u − (λ(a)λ(a)) + 4
3M

)
+ 1

6 (2 − f )M (E.1)

Dαr̂kin|(0,0) = −1

8
f ′′′ϕα(ϕ̄ϕ̄) +

1

8
f ′′ϕα

(
u − (λ(a)λ(a)) +

4

3
M

)

+
1

4
√

2
f ′�α − i

4
f ′λ(a)

α D(a) +
1

4
f ′(σ nmλ(a))αf̂ (a)nm

− 1

4
f ′′(σmϕ̄)αBm +

i

4
f ′′(σmϕ̄)α�m +

1

6
f ′′(σmϕ̄)αbm

+
1

4
f ′′λ(a)

α (λ̄(a)ϕ̄) + X0α|(0,0) + Zα|(0,0) + 2(σ cb) γ
α Tcbγ |(0,0). (E.2)



Full component Lagrangian in the linear multiplet formulation of string-inspired effective supergravity 3929

We have left abbreviated Tcbγ |(0,0), which is given above in (A.19), as well as

Zα|(0,0) = −1

8
k′′′ϕα(ϕ̄ϕ̄) − i

4
k′′(σmϕ̄)α�m − i

4
k′λ(a)

α D(a)

+
1

8
(k′′ϕα + ik′(σmψ̄m)α)

(
u − (λ(a)λ(a)) +

4

3
M

)

+
1

6
k′′(σmϕ̄)αbm − 1

4
k′′(σmϕ̄)αBm − 1

4
k′′λ(a)

α (λ̄(a)ϕ̄)

+
1

4
k′(σ nmλ(a))αf̂ (a)nm +

1

4
√

2
k′�α +

1

6
k′Mϕα +

1

6
k′(σmϕ̄)αbm

− i

2
k′(σmDmϕ̄)α +

i

4
k′(σmσ̄ nψm)α

(
i�n +

2

3
bn − Bn

)

+
i

4
k′(σmλ̄(a))α(ψmλ(a)) (E.3)

X0α|(0,0) = 1√
2
F

k̄
Gkk̄χ

k
α − i√

2
Gkk̄(σ

mχ̄ k̄)α�mφk + iGkλ
(a)
α (T(a)φ)k. (E.4)

These quantities also appear in the final piece that contributes to Lkin:

(D2r̂kin + h.c.)|(0,0) = −1

4
f ′′′′(ϕϕ)(ϕ̄ϕ̄) +

2

3
(f ′′ + f ′′′)(ϕσmϕ̄)bm

+
1

4
f ′′′

[
(ϕ̄ϕ̄)

(
u − (λ̄(a)λ̄(a)) +

4

3
M

)
+ h.c.

]

− f ′′′(ϕσmϕ̄)Bm + f ′′′(ϕλ(a))(ϕ̄λ̄(a)) +
5

6
f ′′ [M(ϕϕ) + h.c.]

+ f ′′
[

i(Dmϕσmϕ̄) − i

2
(λ(a)σmϕ̄)(λ̄(a)ψ̄m)

+
i

2
(ψ̄mσ̄ nσmϕ̄)

(
i�n + Bn − 2

3
bn

)

− i

4
(ψmσmϕ̄)

(
u − (λ̄(a)λ̄(a)) +

4

3
M

)
+ h.c.

]

+
1√
2
f ′′[(ϕ�) + h.c.] − f ′′�m�m

+ f ′′
(

Bm − 2

3
bm

) (
Bm − 2

3
bm

)
− 1

2
f ′(FU + FU)

− 1

2
f ′′(λ(a)λ(b))(λ̄(a)λ̄(b)) + f ′′

(
Bm − 2

3
bm

)
Tr(λσmλ̄)

− 1

4
f ′′

(
u − (λ(a)λ(a)) +

4

3
M

)(
ū − (λ̄(a)λ̄(a)) +

4

3
M

)

+ f ′′[−i(ϕλ(a))D(a) + (ϕσnmλ(a))f̂ (a)nm + h.c.] + 2R − 4

3
bmbm − 8

3
MM

+

(
k′ + k′′

1 − 1
3k′

) [
ϕαX0α|(0,0) + ϕαZα|(0,0) + 2(ϕσ cb) γ

α Tcbγ |(0,0) + h.c.
]

+ [DαX0α|(0,0) + DαZα|(0,0) + h.c.] +
1

8
f ′[D2 Tr(WW)|(0,0) + h.c.]. (E.5)
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Here we have abbreviated DαX0α|(0,0) and DαZα|(0,0). The quantity DαX0α|(0,0) is obtained
from (BGG-4.2.13) with the replacement K(φ, φ̄) → G(φ, φ̄). Thus,

DαX0α|(0,0) = Gkk̄

[
2DmφkDmφ̄

k̄ − 2FkF
k̄ − (ψmχk)(ψ̄mχ̄ k̄)

+ i(χkσmDmχ̄ k̄) − i(Dmχkσmχ̄ k̄)

+ i2
√

2(χkλ(a))(φ̄T(a))
k̄ − i2

√
2(χ̄ k̄ λ̄(a))(T(a)φ)k

+
i√
2
F

k̄
(ψ̄mσ̄mχk) +

i√
2
Fk(ψmσmχ̄ k̄)

+
1√
2
((ψ̄mσ̄ nσmχ̄ k̄) − 2(ψ̄

n
χ̄ k̄))�nφ

k

+
1√
2
((ψmσnσ̄mχk) − 2(ψnχk))�nφ̄

k̄

]

− 1

2
Rkk̄̄(χ

kχ)(χ̄ k̄ χ̄ ̄) + 2GkD(a)(T(a)φ)k. (E.6)

After no small effort we obtain

(DαZα + h.c.)|(0,0) = −1

4
k′′′′(ϕϕ)(ϕ̄ϕ̄) − 1

2
k′ (FU + h.c.) + k′′�m�m

+ 2k′Dm�m +
1

2
√

2
k′′[(�ϕ) + h.c.] +

1

2
k′′D(a)[i(ϕλ(a)) + h.c.]

+
1

2
k′′f̂

(a)

nm[(ϕσnmλ(a)) + h.c.] − 1

2
(k′′ + k′′′)(ϕλ(a))(ϕ̄λ̄(a))

− 1

2
k′′(λ(a)λ(b))(λ̄(a)λ̄(b)) −

[
k′′bm +

1

2
(k′′ + k′′′)Bm

]
(ϕσmϕ̄)

+

[
1

3
(k′ + 2k′′)bm − k′′Bm

]
(λ(a)σmλ̄(a))

+

(
2

3
bm − Bm

) [
4

3
k′bm + k′′

(
2

3
bm − Bm

)]

− 1

4
k′′

(
u − (λ(a)λ(a)) +

4

3
M

)(
ū − (λ̄(a)λ̄(a)) +

4

3
M

)

+

{(
ū − (λ̄(a)λ̄(a)) +

4

3
M

) [
−1

6
k′M +

1

4
k′′′(ϕ̄ϕ̄)

− i

8
k′′(ψmσmϕ̄) +

1

4
k′(ψmψm)

]
+ h.c.

}

+
1

3
k′′[M(ϕϕ) + h.c.] +

1

2
k′′[i(Dmϕσmϕ̄) + h.c.]

+
1

4
k′′

[
i(ψ̄mσ̄ nσmϕ̄)

(
i�n + Bn − 2

3
bn

)
+ h.c.

]

− 1

4
k′′[(λ(a)σmϕ̄)(λ̄(a)ψ̄m) + h.c.]

+ k′(ψmλ(a))(ψ̄mλ̄(a)) − k′[(ψmDmϕ) + h.c.]

− 1

6
k′bn[i(ψmσnσ̄mϕ) + h.c.] +

1

6
k′[iM(ψmσmϕ̄) + h.c.]

+ k′(ψmσnψ̄m)

(
Bn − 2

3
bn

)
− 1

3
k′bm(λ̄(a)σ̄ mλ(a))
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+

(
k′ + 3k′′
k′ − 3

)
[ϕαX0α|(0,0) + ϕαZα|(0,0) + h.c.]

+

(
k′(4 − k′ + k′′2)

k′ − 3

)
[(ϕσ cb)αTcbα|(0,0) + h.c.]

+
1

8
k′[D2 Tr(WW)|(0,0) + h.c.]. (E.7)

Together with the notation defined in appendix A, equations (E.1)–(E.7) provide the full
component expansion of Lkin.

Appendix F. Expansion of L0
GS

A tedious calculation, using the methods described in appendix C, yields

r̂0
GS

∣∣
(0,0)

= 1

8
S [u − Tr(λλ)] +

1

2
Sk̄

[
F

k̄ − 1√
2
(ϕ̄χ̄ k̄)

]
− 1

4
Sk̄;̄(χ̄

k̄χ̄ ̄) (F.1)

Dαr̂0
GS

∣∣
(0,0)

= 1

4
S

[
1√
2
�α − iλ(a)

α D(a) + (σ nmλ(a))αf̂ (a)nm

]

+ Sk

[
1

4
√

2
χk

α (u − Tr(λλ)) + iλ(a)
α (T(a)φ)k

]

+
1

2
Sk̄

[
F

k̄
(ϕα − i(σmψ̄m)α) − 1√

2
λ(a)

α (λ̄(a)χ̄
k̄)

+ �mφ̄
k̄ (

i(σmϕ̄)α + (σnσ̄mψn)α
)

+
√

2i(σmDmχ̄ ̄)α +
1√
2
(σmχ̄ k̄)α(i�m − Bm)

]

+
1√
2
Skk̄χ

k
α

[
F

k̄ − 1√
2
(ϕ̄χ̄ k̄)

]
− 1

2
√

2
Skk̄;̄χ

k
α(χ̄ k̄ χ̄ ̄)

+ Sk̄;̄

[
i√
2
�mφ̄

k̄
(σmχ̄ ̄)α − 1

4
ϕα(χ̄ k̄χ̄ ̄)

]
(F.2)

D2r̂0
GS

∣∣
(0,0)

= −1

2
SFU + Sk

[
−1

2
Fk(u − (λ(a)λ(a))) +

1

2
(χk�)

+ i(ϕλ(a))(T(a)φ)k + D(a)

(
2(T(a)φ)k − i√

2
(χkλ(a))

)

+
√

2i(λ(a)T(a)χ)k +
1√
2
(χkσ nmλ(a))f̂ (a)nm

]

+ Sk̄

{
−1

2

(
F

k̄
+

i√
2
(ψmσmχ̄ k̄)

) (
ū − (λ̄(a)λ̄(a)) +

4

3
M

)

+ 2i�mφ̄
k̄
(i�m − Bm) +

√
2iDm(ϕσmχ̄ k̄)

− iF
k̄
(ϕσmψ̄m) + �nφ̄

k̄
(ϕσmσ̄ nψm) +

√
2M(ϕ̄χ̄ k̄)

+
1

2
(�̄χ̄ k̄) − i√

2
(λ(a)σmχ̄ k̄)(λ̄(a)ψ̄m) +

i√
2

D(a)(λ̄(a)χ̄
k̄)

+
i√
2
(ψ̄mσ̄ nσmχ̄ k̄) (i�n + Bn − bn)
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− 1√
2
(λ̄(a)σ̄ nmχ̄ k̄)f̂ (a)nm + i�mφ̄

k̄
(λ(a)σmλ̄(a))

+ i(φ̄T(a))
k̄[(ϕλ(a)) − 2(λ̄(a)ϕ̄)] − 2DmDmφ̄

k

− i

3
√

2
M(ψmσmχ̄ k̄) +

√
2[Dm(ψ̄mχ̄ k̄) + (ψ̄

mDmχ̄ k̄)]

− (φ̄T(a))
k̄[(ψmσmλ̄(a)) − (ψ̄mσ̄mλ(a))]

+ i�nφ̄
k̄
(ψmσnψ̄

m
) − F

k̄
(ψ̄

m
ψ̄m) − 4

3
MF

k̄

+ 2
√

2i(χ̄T(a)λ̄
(a))k̄ + 2

√
2i�k̄

̄m̄
(φ̄T(a))

m̄(λ̄(a)χ̄ ̄)

− Rk̄
m̄j̄

[
1

2
√

2
(ϕχj )(χ̄ m̄χ̄ ̄) + i�nφ̄

m̄
(χjσ nχ̄ ̄)

]}

+ Skk̄

[ √
2F

k̄
(ϕχk) +

√
2Fk(ϕ̄χ̄ k̄) − 2F kF

k̄

−
√

2i(χkλ(a))(φ̄T(a))
k̄ +

1

2
Rk̄

m̄p̄
(χkχp)(χ̄ m̄χ̄ ̄)

−
√

2�nφ
k(ψ̄mσ̄ nσmχ̄ k̄) + (χkσmχ̄ k̄)

(
i�m +

2

3
bm − Bm

)

− (χkλ(a))(χ̄ k̄ λ̄(a)) +
√

2i�mφ̄
k̄
(χkσmϕ̄)

]

+ Sk;

[
1

4
(χkχ)(u − (λ(a)λ(a))) +

√
2i(χλ(a))(T(a)φ)k

]

+ Sk̄;̄

[
1

4
(χ̄ k̄χ̄ ̄)

(
u − (λ̄(a)λ̄(a)) − 4

3
M

)

+
√

2i�mφ̄
k̄
(ϕσmχ̄ ̄) − 2�mφ̄

k̄
�mφ̄

̄

+ 2
√

2i(λ̄(a)χ̄ k̄)(φ̄T(a))
̄

]
+ Skk̄;̄

[
− 1√

2
(χ̄ k̄ χ̄ ̄)(ϕχk)

+ F k(χ̄ k̄χ̄ ̄) + 2i�mφ̄
̄
(χkσmχ̄ k̄)

]

+ Sk̄;

[
− 1√

2
(χkχ)(ϕ̄χ̄ ̄) + F

̄
(χkχ)

]

− 1

2
Skk̄;;̄(χ

kχ)(χ̄ k̄χ̄ ̄) +
1

8
SD2 Tr(WW)|(0,0)

+ 2
√

2Sk̄(χ̄
k̄ σ̄ cb)α̇T α̇

cb |(0,0). (F.3)
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